تخمین ضریب تبدیل شلتوک با استفاده از شبکه های عصبی مصنوعی در خشک کردن بستر سیال

Authors

رضا امیری چایجان

r amiri chaijan محمدهادی خوش تقاضا

m khosh taghaza غلامعلی منتظر

gh montazer سعید مینایی

s minaee محمد رضا علیزاده

abstract

هدف از این پژوهش، بر اورد ضر یب تبد یل شلتوک به برنج سفید در خشک کردن بستر سیال به کمک شبکه ها ی عصبی مصنوعی است . هفت عامل مؤثر در عملکرد خشک کن های بستر سیال به عنوان متغیرهای مستقل برای شبکه عصبی مصنوعی در نظر گرفته شد . این متغیرها عبارت اند از رطوبت نسبی هوای محیط، دمای هوای محیط، سرعت هوای ورودی، عمق بستر شلتوک، دمای هوای ورودی، رطوبت اولیه و رطوبت نهایی شلتوک. تعداد ٢٧٤ آزمایش برای ایجاد الگوهای آموزش و ارزیابی به وسیله یک خشککن آزمایشگاهی انجام گردید. سپس نمونه هایی از محفظه خشک کن جدا و عملیات پوست کنی و سفید کردن با دستگاه های آزمایشگاهی انجام گرفت. ضریب تبدیل میانگین، به عنوان ضریب تبدیل آزمایش منظور شد . از شبکه ها و الگوریتم های یادگیری متعدد برای آموزش الگوهای موجود استفاده شد . نتایج ٧ و الگوریتم آموزش لونبرگ - مارکوارت و تابع آستانه تانژانت -١٣-٧- بررسی ها نشان داد که شبکه پس انتشار پیشر و با توپولوژی ١ ٠ در شر ایط / ٩٥ درصد و خطای متوسط مطلق ٠١٩ / سیگمویید قادر است راندمان تبدیل شلتوک ر ا به برنج سفید با ضریب تعیین ٤٨ مختلف خشک کردن شلتوک در گستره بستر سیال پیش بینی نماید هم چنین نتایج نشان داد که دمای هو ای ورودی و میزان رطوبت نهایی شلتوک، بیشترین تأثیر را بر ضریب تبدیل شلتوک به برنج سفید در خشک کردن بستر سیال دارند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی ضریب تبدیل شلتوک به برنج سفید در خشک کردن به روش بستر ثابت به کمک شبکه های عصبی مصنوعی

هدف از این تحقیق پیش­بینی ضریب تبدیل شلتوک به برنج سفید در خشک کردن به روش بستر ثابت به کمک شبکه های عصبی مصنوعی است.  چند پارامتر در عملکرد خشک کن های بستر ثابت مؤثرند که به عنوان متغیرهای مستقل برای شبکة عصبی مصنوعی در نظر گرفته شده­اند.  این متغیرها عبارت­اند از رطوبت نسبی هوای محیط، دمای هوای محیط، سرعت هوای ورودی، عمق بستر شلتوک، دمای هوای ورودی، رطوبت اولیه و رطوبت نهایی.  برای ایجاد الگو...

full text

تخمین پارامترهای خشک کردن گوجه فرنگی با کمک شبکه های عصبی مصنوعی

در این پژوهش خشک کردن لایه ای نازک گوجه فرنگی به روش جابجایی هوای داغ شبیه سازی گردید. اسلایس های گوجه فرنگی در دو دمای (60 و 70 درجه سانتیگراد) خشک شدند. شبکه عصبی پرسپترون برای پیش بینی نسبت رطوبت و سرعت خشک کردن نمونه ها در طی خشک کردن بکار گرفته شد. بهترین چیدمان شبکه عصبی برای شبکه اول بر اساس یک لایه پنهان،2 و 8 نرون در لایه پنهان به ترتیب برای نسبت رطوبت و آهنگ خشک کردن بود. همچنین بهتری...

full text

تخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی

انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...

full text

My Resources

Save resource for easier access later


Journal title:
تولید محصولات زراعی و باغی

جلد ۱۳، شماره ۴۸، صفحات ۲۸۵-۲۹۸

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023